H=4+64t+16t^2

Simple and best practice solution for H=4+64t+16t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=4+64t+16t^2 equation:



=4+64H+16H^2
We move all terms to the left:
-(4+64H+16H^2)=0
We get rid of parentheses
-16H^2-64H-4=0
a = -16; b = -64; c = -4;
Δ = b2-4ac
Δ = -642-4·(-16)·(-4)
Δ = 3840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3840}=\sqrt{256*15}=\sqrt{256}*\sqrt{15}=16\sqrt{15}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-16\sqrt{15}}{2*-16}=\frac{64-16\sqrt{15}}{-32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+16\sqrt{15}}{2*-16}=\frac{64+16\sqrt{15}}{-32} $

See similar equations:

| 96=6(u-84) | | (-15z)-(38z)+(-38z)-8=7 | | 9x+x/6=180 | | x/12+1=16 | | 5y-8=-4y+2+10y | | 2x^2+12x=135 | | 3x+7=2x=3 | | 326+(14+2x)(24+2x)=816 | | (-14z)-28z+(-27z)-(-35z)=-34 | | 200m-150m+43,200=45,225-150m | | (14+2x)(24+2x)=x | | -1-q=-6q+6q=18 | | 4n-1=6n+8-7+15 | | 3m-1+m+6=9-2 | | x/46.3=0.7 | | 2b+6-b= | | 3×-7=6x-8 | | 7(x-12)=-21* | | (0.1^2+0.7x+1=0)(10) | | -10v^2-41v-4=0 | | 6s-2s-3s+s+s-2=19 | | 2v-1=-v-6 | | 3x-4+x+16+12.7=180 | | (-22x-5x)+12+2x=15-(13x+2x)+7 | | 20n+2n+n-21n=6 | | 10p^2+32p+6=0 | | 3x-4+x+16=12.7 | | 11+w=19 | | 10-6r=-6r-10-5r | | 8k^2-10k-18=0 | | 3+3/4x=12 | | 11x+2=10x+5 |

Equations solver categories